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In a gravitational field, a horizontal interface between two miscible fluids can be buoy-
antly unstable because of double diffusive effects or because of a Rayleigh-Taylor
instability arising when a denser fluid lies on top of a less dense one. We show here
both experimentally and theoretically that, besides such classical buoyancy-driven
instabilities, a new mixed mode dynamics exists when these two instabilities act
cooperatively. This is the case when the upper denser solution contains a solute A,
which diffuses sufficiently faster than a solute B initially in the lower layer to yield
non-monotonic density profiles after contact of the two solutions. We derive analyt-
ically the conditions for existence of this mixed mode in the (R, δ) parameter plane,
where R is the buoyancy ratio between the two solutions and δ is the ratio of diffusion
coefficient of the solutes. We find an excellent agreement of these theoretical predic-
tions with experiments performed in Hele-Shaw cells and with numerical simulations.
C© 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4790192]

I. INTRODUCTION

Studies on the mixing of fluids due to buoyancy-driven convective instabilities are of generic
interest because of the tantamount importance of such convective processes in technological and
environmental problems. As an example of such instabilities, the well-known Rayleigh-Taylor (RT)
instability occurs when a denser solution lies on top of a less dense one in the gravity field leading
to interpenetrating fingers and vivid convective motions (Fig. 1(a)).1, 2 RT convection is observed in
applications as diverse as CO2 sequestration,3, 4 stellar, and planetary interior dynamics,5 granular
systems,6 or sediment and contamination transport in soils7 as well as in the atmosphere or oceans for
instance. Other much studied buoyancy-driven instabilities are double diffusive instabilities observed
in the presence of two adverse density gradients due to two different variables diffusing at different
rates.8–10 Such differential diffusion phenomena are for instance at the origin of thermohaline
convective motions in the oceans due to differential diffusivities of salt and heat11 and are also
observed in magma crystallization phenomena12 or in stellar dynamics for instance. They can also
occur as soon as two solutes with different diffusion coefficients (such as salt and sugar, for instance,
see Figs. 1(b) and 1(c) participate in density gradients starting from an initially stable density
stratification.13–17 Because of the large range of spatial scales involved in applications of RT and
double diffusive instabilities, theoretical modeling backed up by laboratory-scale experiments have
been developed to analyze their dynamics. Up to now, these classical buoyancy-driven instabilities
have been characterized individually, but the dynamics resulting from the interaction between them
has not yet been considered, in contrast to numerous other pattern-forming systems.

1070-6631/2013/25(2)/024107/10/$30.00 C©2013 American Institute of Physics25, 024107-1

http://dx.doi.org/10.1063/1.4790192
http://dx.doi.org/10.1063/1.4790192
http://dx.doi.org/10.1063/1.4790192
http://dx.doi.org/10.1063/1.4790192
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4790192&domain=pdf&date_stamp=2013-02-28


024107-2 Carballido-Landeira et al. Phys. Fluids 25, 024107 (2013)

FIG. 1. Buoyancy-driven instabilities in a vertical Hele-Shaw cell at the miscible interface between two fluids: (a) Rayleigh-
Taylor (R, δ) = (0.82, 0.51) at t = 20 s, (b) double-diffusion (R, δ) = (2, 1.96) at t = 600 s, (c) diffusive layer convection
(R, δ) = (1.25, 0.27) at t = 300 s, (d)−(f) three consecutive snapshots of the mixed mode dynamics at (R, δ) = (0.89, 0.27)
taken at 40, 50, 60 s after contact. Frames size: (a)−(c) 15 mm × 9 mm, (d)−(f) 11 mm × 9 mm.

In this context, we propose a unifying classification of all such buoyancy-driven instabilities
of a two-layer miscible system. We furthermore demonstrate both theoretically and experimentally
the existence of a hitherto unexplored mixed mode (MM) of instability resulting from the coupling
between RT and differential diffusion convective modes (Figs. 1(d)–1(f)). This mixed mode regime
is observed in a stratification of a denser solution of a solute A on top of a less dense solution of
another solute B provided A diffuses sufficiently faster than B. It is characterized by both a saturation
of the deformation of the initial contact line in time and “Y” shaped antennas growing on both sides
of it. We derive analytically the existence zone of this MM in the parameter space spanned by a
buoyancy ratio R and a diffusion coefficient ratio δ. Excellent agreement between these predictions,
experimental data, and numerical simulations of the relevant model are obtained.

II. BUOYANCY-DRIVEN INSTABILITIES

We consider a two-dimensional vertical stratification of a solution of A at a concentration A0

and density ρA overlying a miscible solution of B at concentration B0 and density ρB with the
gravity field pointing downwards along the x direction. The initial condition for the dimension-
less concentrations a = A/A0, b = B/B0 is taken as a = H(−x) and b = H(x), where H is the
Heaviside function and x = 0 is the initial position of the horizontal contact line. The dimensional
density ρd of the solution is assumed to vary linearly with the concentrations as ρd = ρ0(1 + αAA
+ αBB) where the solutal expansion coefficients are αA = 1

ρ0

∂ρ

∂ A and αB = 1
ρ0

∂ρ

∂ B and ρ0 is the density
of the pure solvent.

Classically, the convective instabilities affecting such a stratification of a fluid A on top of a
miscible fluid B in the gravity field are classified in three regimes.10 The RT instability occurs when
the density ρA = ρ0(1 + αAA0) of the upper solution of A is larger than the density ρB = ρ0(1
+ αBB0) of the lower solution of B. The interface deforms in “fingers” of the less dense fluid rising
between the denser sinking ones hence also the name “density fingering” for this instability, which
has been much studied both theoretically and experimentally.1, 2 Fig. 1(a) shows an example of a RT
dynamics when a denser solution of glycerol is put on top of a less dense solution of sucrose in a
Hele-Shaw cell, i.e., two glass plates separated here by a gap of 0.25 mm and oriented vertically in
the gravity field.18

If ρA < ρB, i.e., if we start from an initially statically stable stratification of a less dense fluid
on top of a denser one, instabilities can nevertheless occur because of differential diffusion effects.
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FIG. 2. Classification of the various density profiles in the (R, δ) parameter plane for δ < 1. Dynamics characteristic of RT,
MM, and DLC are obtained experimentally for the points above the full line (red online) and those shown by diamonds (red
online) and black squares, respectively. The filled circle (green online) and diamond (red online) are those corresponding to
the images of Figs. 1(a) and 1(d)–1(f), respectively. The sketches represent the typical density profiles in each region.

These can take place if DA and DB, the diffusion coefficients of A and B are sufficiently different,
i.e., if their ratio δ = DB/DA �= 1.

If δ > 1, the so-called double-diffusive (DD) instability (also commonly named “salt fingering”
because of its general applicability in ocean dynamics8) can be observed. The DD modes also produce
ascending and descending fingers across the initial contact line10, 13, 14 as seen on Fig. 1(b), where a
less dense solution of slow diffusing sucrose overlies a denser solution of faster diffusing glycerol.

Eventually, if ρA < ρB but δ < 1, diffusive layer convection (DLC) modes develop convective
vortices at symmetric distances above and below the unperturbed interface as seen on Fig. 1(c) for
a solution of the faster diffusing KCl above a denser solution of sucrose.10, 16 DLC is due to the fact
that DA > DB and hence, the component A in the less dense upper solution diffuses faster downwards
than the component B of the denser lower solution diffuses upwards. This leads to both a depletion
and accumulation zone developing, respectively, above and below the interface, and in which locally
adverse density gradients trigger convection.10, 15 The initial contact line remains unperturbed as
seen on Fig. 1(c) as the DLC pattern develops symmetrically around it.

To unify the description of these various modes of convection, we non-dimensionalize the
problem and classify the various convective regimes in a suitable parameter plane. In the absence
of convection, the two solutions of A and B mix by diffusion and the base state of the problem
is a = 1

2 erfc(η) and b = 1
2 erfc(−η/

√
δ), where the self-similarity variable η = x/

√
4t with x and

t the dimensionless space and time.10 The corresponding dimensionless base state density profile
is ρ = a + Rb where ρ = (ρd − ρ0)/ρ0αAA0. The buoyancy ratio R = αBB0/(αAA0), which is
also equal to R = (ρB − ρ0)/(ρA − ρ0), expresses the relative contribution of species B and A
to the dimensional density profile. In dimensionless units, the density ρa of the upper solution is
ρa = a = 1 while that of the lower solution of B is ρb = R.

In the parameter space (R, δ), the RT instability occurs when ρa > ρb, i.e., in the half plane
R < 1 (Fig. 2).10 The DD and DLC modes can exist in the reverse situation R > 1 in the δ > 1 and
δ < 1 regions, respectively. Stability regions and dynamical properties of these three RT, DD, and
DLC regimes have already been described previously10 and we focus here only on the lower half
plane δ < 1.

To further investigate the influence of differential diffusive effects on the dynamics when δ �= 1,
we note that the density profile features non-monotonic behavior19–21 for δ > max(1, R2) (not shown
here but detailed in Ref. 10) or δ < min(1, R2). In particular, if δ < R2 < 1 (Fig. 2), a maximum ρmax

and minimum ρmin in density develop locally at η = ±ηm where ηm = √
δ/(1 − δ)

√
ln(R/

√
δ).
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FIG. 3. Density profiles (a) on the full curve (red online) δ = Rc of Fig. 2 for R = 0.84 and (b) in the MM zone for δ = 0.3
and R = 0.9. (c) Summarizes the zone of existence of RT, MM, and DLC modes depending on the relative value of �ρ0 and
�ρ′ for δ = 0.3.

As seen on the sketches of Figs. 2 and 3, at fixed δ < R2 < 1, increasing R simultaneously
decreases the density difference �ρ0 = ρa − ρb = 1 − R between the two pure solutions and
increases �ρ ′ = ρmax − ρmin, the density difference between the two extrema. Let Rc denote the
critical value of R when �ρ0 = �ρ ′. Fig. 3(a) shows that the local maximum in the base state density
profile has then a peak equal to 1 and a local minimum equal to R, the blue dashed line representing
the initial density profile. The location ηm at which ρmax(ηm) = 1 or also a + Rb = 1 amounts to
solve the equation 2 = erfc(ηm) + R erfc(−ηm/

√
δ). Although this must be solved numerically we

notice that Rc → 0.5 when δ → 0 while Rc → 1 as δ → 1. An expansion about δ = 1 by writing
Rc = 1 − ε and δ = 1 − εn and letting ε tend to zero, yields, to first order in ε, an equation for n. By
writing n = 2/(1 − 2m2), we obtain to leading order the equation

√
πem2

erfc(−m)(1 − 2m2) = 2m,
which reveals that n ≈ 6.8. One notes that the equation δ = Rn is consistent with this expansion
near R = δ = 1. Fig. 2 delimits the regions in the (R, δ) parameter plane where the various types of
density profiles are obtained for δ < 1.

III. MIXED MODE

To link the above theoretical density profiles to experimental observations and test the importance
of the non-monotonic character of the density profile on the nonlinear dynamics, we have performed
experiments in Hele-Shaw cells scanning various values of δ and R (Figs. 1 and 2). To analyze the
dynamics at different values of δ, we use KCl above sucrose (δ = 0.27), NaCl on top of sucrose
(δ = 0.34), KCl above glycerol (δ = 0.53), and glycerol overlying sucrose (δ = 0.51). The diffusion
coefficient and solutal expansion coefficient of the solutes used in the experiments are summarized
in Table I. To vary R for one specific pair of solutes (fixed δ), we use initial concentrations A0 and
B0 in the order of 10−2 mol/l. The dimensional density ρA,B of these solutions is measured using
an Anton-Paar densimeter. One of the two solutions is then progressively diluted and its density
measured to vary R according to the formula R = (ρB − ρ0)/(ρA − ρ0) where ρ0 is the density of
water. This procedure ensures reproducible experiments independently of slight changes of density
with temperature and pressure.

As color indicator or dyes can perturb the dynamics,25, 26 visualization is made by a Schlieren
technique27 tracking changes in the index of refraction induced by the dynamics. In effect, the
experimental images (Fig. 1) show changes in the gradient of the refraction index in a grey scale
ranging from white to black between the absolute minimum and maximum values reached during
the dynamics respectively. Initially, the contact line corresponds to the maximum black value in this
scale as it is the location of the largest gradient. We follow the dynamics of this “contact line” at
later time by following the evolution of this maximum.
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TABLE I. Expansion coefficients α, diffusion coefficients D of the solutes used in experiments.

Solute α [10−2 l/mol] D [10−5 cm2/s] Ref.

NaCl 4.0 1.54 22
KCl 4.8 1.91 22
Sucrose 12.2 0.52 23
Glycerol 2.3 1.02 24

In the DLC regime, i.e. if R > 1 for δ < 1 (black squares in Fig. 2), the local minimum above
and local maximum below the contact line for an initially stable density stratification (�ρ0 < 0)
lead to the dynamics of Fig. 1(c). The contact line is initially non-deformed and convection develops
at symmetric distances above and below it in the zones of the locally statically unstable density
gradients.

In the RT zone for R < 1, the dynamics depends on the value of δ. For δ > R2, the density profile
ρ is monotonically decreasing along gravity (Fig. 2), and a classical RT dynamics is observed,
with regular smooth fingers and a sinusoı̈dal deformation of the initial contact line at the onset
of the instability such as in the case of a denser solution of A on top of the pure solvent studied
experimentally by Fernandez et al. in a Hele-Shaw for instance.2

If δ < R2, the density profile becomes non-monotonic (Fig. 2) and differential diffusion effects
start to impact the RT instability. As long as Rc < δ < R2, then �ρ0 > �ρ ′, i.e., the unfavorable
density difference between the two pure solutions of A and B is larger then the locally stable zone
in the middle. Hence, the RT mode dominates and strongly deforms the contact line. Differential
diffusion effects manifest themselves only by deforming the upward moving caps of the fingers in a
mushroom way (see Fig. 1(a)). This is reminiscent of what is observed in nonlinear simulations of
RT instabilities with a fast diffusing upper component performed by Trevelyan et al.10 even though
the refractive index images of Fig. 1 cannot directly be compared to their numerical concentration
maps. In this regime, the mixing length defined as the distance between the furthest upward and
downward location of the interface deformation grows continuously in time (Fig. 4).

If δ < Rc, then �ρ0 < �ρ ′ such that the values of the extrema of the non-monotonic density
profile are outside the range of the end-point values of densities for the pure fluids (see Fig. 3(b)).
The dynamics features then a combination of RT and DLC trends giving rise to the mixed mode. The
DLC characteristic leads to little “Y shaped” convective structures developing around the interface
at the locations of the local adverse density gradients between the end-point values and the extrema
(Figs. 1(d)–1(e)). These “antennas,” which keep on growing in time resulting in a steadily increasing
mixing length (Fig. 4(b)), alternate on average upwards and downwards out of the interface, which
initially remains almost unperturbed. Later on, the RT mode comes into play as well due to the
fact that ρa > ρb and the interface itself starts to be modulated (Fig. 1(f)). However, the amplitude
of this modulation saturates after a given time as seen on Fig. 4(c). This saturation is different
from the continuous growth characteristic of the dominance of the RT mode for the cases where
δ > Rc.10 The red diamonds in Fig. 2 represent the experimentally determined MM regimes where
the DLC contribution to the dynamics begins to dominate over the RT instability leading to a
saturation of the amplitude of the interface deformation after a given transient. At a fixed δ < 1, the
contribution of the RT mode on the dynamics decreases as R increases and δ decreases. The related
smooth decrease in the mixing length from RT to the DLC mode agrees with the numerical trends
computed numerically in Trevelyan et al.10 (see Figure 18(b) in Ref. 10). This is also the case for
the saturated amplitude of the interface modulation, which decreases when R increases as seen on
Fig. 4(c).

The wavelength of the mixed mode, measured as the distance on a horizontal line between
two consecutive upside (or downside) “Y antennas” does not remain constant in time mainly due
to the waving of the interface, which induces a motion and sometimes even a possible collision of
the plumes. The wavelength depends on the (R, δ) values and is roughly equal to 1.3 mm for the
experiment shown in Figs. 1(d)–1(f). For a given couple of solutes, i.e., for a given value of δ, the
experimental wavelength slightly increases upon increasing R.
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FIG. 4. (a) Sketch showing how the mixing length is measured as the distance between the two black horizontal lines passing
by the furthest upmost and downmost points of the fingering zone while the amplitude of the deformation of the contact line
is the distance between the two dashed (red online) horizontal lines passing by the furthest upmost and downmost points
of the deformed interface. The temporal evolution of the mixing length and of the amplitude of the interface modulation
are given on panels (b) and (c) for δ = 0.27 and R = 0.8 (RT, crosses), 0.85 (MM, dotted line), 0.89 (MM, dashed line),
0.96 (MM, solid line), and 1.01 (DLC, squares). The mixing length continuously increases in time for all values of R but its
intensity decreases as R increases. (c) The amplitude of the contact line modulation is equal to the mixing length in the RT
mode, saturates to a constant value in the MM dynamics and vanishes in the DLC regime.

In short, differential diffusion effects can deform RT dynamics when R < 1. As long as the
extrema of the non-monotonic density profiles are not larger than the end-point densities of the
pure solutions (Rc < δ < R2, green circles of Fig. 2), the RT mode remains dominant, the interface
strongly deforms and the mixing length nearly equals the amplitude of the interface modulation
and both keep growing in time. In the MM regime (δ < Rc, red diamonds of Fig. 2), these extrema
are outside the end-point values and the local intermediate stabilizing zone stops the continuous
growth of the interface. This induces a saturation of the growth of the interface modulation with
DLC antennas growing on both sides where the local adverse gradients operate, leading to a mixing
length still increasing but at a rate decreasing when δ decreases or R increases.

IV. NONLINEAR SIMULATIONS

Signatures of the non-monotonic density profile and of the MM mode can been obtained in
nonlinear simulations of a diffusion-convection model of the problem as well. In the modeling,
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we assume that the solutions are dilute so that the Boussinesq approximation can be made and
the fluid can be treated as incompressible. The evolution equations are the continuity equation, an
evolution equation for the flow velocity u, and transport equations for the concentrations a, b of the
solutes A and B. To simulate the above experiments performed in Hele-Shaw cells, we use two-
dimensional Darcy’s law for the flow equation but a generalization to the Navier-Stokes equation
could be done along the same line. In the absence of a given physical length scale, the problem is
non-dimensionalized using the characteristic velocity uc = gKαAAo/ν, where g is the magnitude of
the gravitational acceleration, K the permeability, and ν the kinematic viscosity defined as μ/ρ0 with
μ being the dynamic viscosity. Then the characteristic length, lc, and time, tc, are given by DA/uc

and DA/u2
c , respectively. The dimensionless system of equations is10

∇ p = −u + (a + Rb)i, (1a)

∇ · u = 0, (1b)

at + u · ∇a = ∇2a, (1c)

bt + u · ∇b = δ∇2b. (1d)

The nonlinear simulations of model (1) are performed using a pseudo-spectral scheme.28 In the
numerics, the DLC mode has a clear signature: the stream function features two rows of alternating
vortices around the initial contact line instead of one single roll structure across the interface
characteristics of the RT instability.10 The transition from a dominant RT instability to MM is shown
on Figure 5 with the concentration map of species B for R = 0.85 and δ = 0.8, 0.6, 0.4, and 0.2

FIG. 5. Numerical concentration maps of species B for R = 0.85 and in each column: δ = 0.8, 0.6, 0.4, and 0.2 on a width
W=16384, 16384, 8192, 8192 (aspect ratio constant) from left to right. Times of the first row are, respectively, from left to
right: t = 2 × 105, 2 × 105, 1.4 × 105, and 5 × 104; for the second row, we have t= 1.1 × 106, 1.1 × 106, 5.8 × 105, and
4 × 105.
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FIG. 6. Reconstructed numerical density maps ρ = a − Rb for R = 0.85 and δ = 0.2 in a system of width 8192 (aspect ratio
preserved) on a grey scale ranging from the less dense in white and the denser in black. (top left) Initially, at t = 0, a little
sinusoı̈dal perturbation is added on the contact line between the denser solution of A on top of the less dense solution of B;
(bottom left, t = 30 000) As A diffuses faster than B, it creates a denser accumulation zone (black line) beneath the miscible
interface while a less dense depletion zone (white line) appears above it. This effect is weakened at the tip of the protrusions
because of curvature effects; (right, t = 70 000) Across the lateral sides of the minima, A diffuses faster out than B enters
creating denser sinking sides. At the tip of the minima, the concentrated inward flux of B and diluted outward flux of A
lead to a mixed zone of intermediate density, which rises between the sinking denser sides. As a result, “Y” shaped sinking
antennas are observed. A symmetric argument can be developed for the rising maxima.

from left to right, respectively. The colormap has been chosen in order to track the isoconcentration
0.5 as a marker of the evolution of the initial interface. For δ = 0.8, i.e., δ > R2, the density profile
is monotonic decreasing along the gravity field and a RT mode strongly deforms the interface right
from the beginning. For δ = 0.6 and 0.4 (green circles on Fig. 2), the coupling between RT and
DLC modes provides rising plumes and sinking fingers developing around a saturated interface
deformation, the amplitude of which decreases with δ. The last panel for δ = 0.2 (in the MM red
diamonds zone below Rc on Fig. 2) shows the mixed mode dynamics with a small RT deformation
of the interface of asymptotic constant amplitude and DLC convective motions developing around
it where the two extrema of the non-monotonic density profile are located. The evolution of the
mixing lengths (computed in Ref. 10) and of the deformation of the interface for a constant δ and
increasing R is similar to those obtained in experiments. In Fig. 5, the widths and times of images
have been chosen to highlight the scales on which the patterns have similar longitudinal extensions.
This shows that, when the RT modes largely dominate the dynamics (δ = 0.8 and 0.6), the patterns
grow on similar time and space scales. On the contrary, when the DLC mode starts to dominate
(δ = 0.4 and 0.2), the wavelength of the pattern decreases and a similar extension is reached quicker,
in other words the system is more unstable when δ decreases.

Note that the existence of the “Y” antennas is more easily obtained in reconstructed density pro-
files (Fig. 6) than in concentrations maps. To understand the origin of these “Y” shaped protrusions,
consider an interface perturbed by some sinusoı̈dal perturbation. The faster diffusion of denser A
downwards is not compensated fast enough by the slower diffusion of the less dense B upwards,
which creates denser minima below the interface and less dense maxima above it (Fig. 6 (top left)).
Within the minima, A keeps diffusing out perpendicularly to the surface of the protrusion quicker
than B can fill it, which progressively dilutes the inner part of the minimum, accumulating A on
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the outer rim of the interface (Fig. 6 (bottom left)). However, at the tip of the minimum, because
of curvature effects, the inflow of B is larger and the outflow of A is smaller than at the sides such
that an averaged density is obtained there. As a consequence, the denser lateral zones sink on the
sides of the less dense rising middle zone, which gives the characteristic “Y” shape (Fig. 6 (right)).
A symmetrical argument can be applied to the upper growing maxima.

V. CONCLUSIONS

We have provided experimental evidences of the influence of differential diffusion effects on
the RT instability when a denser solution of a fast diffusing species A is put above a less dense
solution of a slower diffusing component B. If Rc < δ < R2 < 1, the RT fingers feature mushroom
caps while if δ < Rc < 1, a mixed-mode instability combining properties of the RT and DLC modes
is observed. The MM dynamics features “Y shaped” convective structures characteristic of the
DLC mode growing both above and below the initial contact line modulated with a finite saturated
amplitude. In the nonlinear dynamics, the mixing length giving the total extent of the fingered zone
increases in both RT, MM, and DLC regimes with a slope decreasing as R increases. The amplitude
of the contact line deformation on the other hand increases in the RT mode, saturates to a constant
value in the MM regime while is vanishing in the DLC mode. These characteristics are recovered in
numerical simulations as well.

The discovery and experimental characterization in 2D Hele-Shaw cells of the new mixed mode
buoyancy-driven instability calls for future studies including simulations of the MM dynamics using
2D and 3D Navier-Stokes equation and experimental studies of it in 3D tanks. Search for analogous
mixed modes in dynamics of reactive systems15, 29 or in other hydrodynamic instabilities30 where
differential diffusion effects have been evidenced would also be of particular interest.

Eventually our classification of all possible buoyancy-driven instabilities of a two-layer system
in a simple (R, δ) parameter plane paves the way for a unification of future comparisons between
experiments and simulations even in systems with very different length and time scales.
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